首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13440篇
  免费   1376篇
  国内免费   2984篇
化学   15410篇
晶体学   162篇
力学   368篇
综合类   51篇
数学   68篇
物理学   1741篇
  2024年   8篇
  2023年   98篇
  2022年   218篇
  2021年   385篇
  2020年   580篇
  2019年   565篇
  2018年   499篇
  2017年   692篇
  2016年   776篇
  2015年   738篇
  2014年   758篇
  2013年   1382篇
  2012年   1142篇
  2011年   928篇
  2010年   794篇
  2009年   844篇
  2008年   831篇
  2007年   843篇
  2006年   782篇
  2005年   761篇
  2004年   673篇
  2003年   525篇
  2002年   436篇
  2001年   392篇
  2000年   257篇
  1999年   249篇
  1998年   224篇
  1997年   148篇
  1996年   146篇
  1995年   230篇
  1994年   223篇
  1993年   199篇
  1992年   124篇
  1991年   70篇
  1990年   58篇
  1989年   40篇
  1988年   39篇
  1987年   19篇
  1986年   23篇
  1985年   24篇
  1984年   22篇
  1983年   12篇
  1982年   26篇
  1981年   11篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
A conspicuous detail of the so-called brown-ring test (the analytical test on nitrate) is the reddish color of the bottom layer of concentrated sulfuric acid, which develops upon the bleeding of the brown layer into the acid. Crystals of the same color form from a solution of ferrous sulfate in concentrated sulfuric acid on saturation with gaseous nitric oxide. The structure of this H3O[{Fe(NO)(μ4-SO4)(μ2-SO4)0.5}n/n] ( 1a ) is made up from infinite chessboard-type layers with sulfur on the field junctions and Fe(NO) moieties below the black and above the white fields. An Fe–N–O angle of about 160° causes disorder in the tetragonal space group I4/mmm. A similar crystal pathology was found in the related [{Fe(MeOH)(NO)(μ4-SO4)}n/n] ( 1b ) in the same crystal class. A one-dimensional coordination polymer is formed in crystals of a third compound that comprises the Fe(NO)O5 coordination pattern, namely the brown oxalato species [{Fe(H2O)(NO)(μ2-ox)}n/n · H2O] ( 2 ). A still larger NO tilt of about 156° is not obscured by disorder in the triclinic crystals of 2 .  相似文献   
82.
To achieve unique molecular-recognition patterns, a rational control of the flexibility of porous coordination polymers (PCPs) is highly sought, but it remains elusive. From a thermodynamic perspective, the competitive relationship between the structural deformation energy (Edef) of soft PCPs and the guest interaction is key for selective a guest-triggered structural-transformation behavior. Therefore, it is vital to investigate and control Edef to regulate this competition for flexibility control. Driven by these theoretical insights, we demonstrate an Edef-modulation strategy via encoding inter-framework hydrogen bonds into a soft PCP with an interpenetrated structure. As a proof of this concept, the enhanced Edef of PCP enables a selective gate-opening behavior toward CHCl3 over CH2Cl2 by changing the adsorption-energy landscape of the compounds. This study provides a new direction for the design of functional soft porous materials.  相似文献   
83.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
84.
《化学:亚洲杂志》2018,13(19):2939-2946
The facile preparation of platinum‐based catalysts with designed compositions and structures is of great importance for fuel cells. In this work, a one‐pot method is developed to synthesize monodispersed trimetallic PtPdCo mesoporous nanoparticles (PtPdCo MNs) with uniform morphology and size. The proposed synthetic method does not require any hard template or organic solvent, which greatly simplifies the preparation procedure. PtPdCo MNs, with a highly porous structure, exhibit enhanced electrocatalytic activities and excellent stabilities for both the formic acid oxidation reaction and the oxygen reduction reaction, relative to bimetallic PtPd MNs and commercial Pt/C catalyst. The proposed synthetic method is highly valuable for the design of mesoporous multimetallic catalysts for fuel cells.  相似文献   
85.
The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave-assisted reaction of citric acid and ethylenediamine was investigated by 13C, 13C{1H}, 1H─13C, 13C{14N}, and 15N solid-state nuclear magnetic resonance (NMR) experiments. 13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases. 15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved 13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2 at 155 ppm, and two distinctive 15N NMR resonances near 80 and 160 ppm proved the presence of 5-oxo-1,2,3,5-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross-peaks in a 1H─13C HETCOR spectrum with brief 1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative 13C and 15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in 13C chemical-shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.  相似文献   
86.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
87.
The construction of nanoscopic materials by synthetic methodologies that iterate covalent and supramolecular interactions has been developed over the past three decades as a powerful method to afford complex functional materials. Indeed, the present study was nearly lost in the archives of dissertation research completed in 2001, which revealed nanoscale conformational dynamics in the segmental reorganization, and partial inversion, of topologically shell crosslinked knedel-like (SCK) nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 204–214  相似文献   
88.
Thermoset (TS) epoxy resins can be toughened with a thermoplastic (TP) for high-performance applications. The final structure morphology has to be controlled to achieve high mechanical properties and high impact resistance. Four polyethersulfone-modified epoxy resins are considered. They consist of different epoxy monomer structure (TGAP, triglycidyl-p-aminophenol and TGDDM, tetraglycidyl diaminodiphenylmethane) and a fixed amount of thermoplastic, and they are cured with two different amounts of curing agent. A reaction-induced phase separation occurs for all formulations generating morphologies, different in shapes and scales. The aim is to control the final morphology and in particular its dominant length scale. This morphology depends on the phase separation process, from the initiation to its final stage. The initiation relies on the relative miscibility of the components and on the stoichiometry between epoxy and curing agent. The kinetics depends on the viscosity of the systems. The different morphologies are characterized by electron microscopy or neutron scattering. Dynamic mechanical analysis allows confirming the presence of a phase separation even when it is not observable by electron microscopy. Vermicular morphologies with few hundreds nanometer width are obtained for the systems containing the TGAP as epoxy monomer. Systems formulated with TGDDM presents morphologies on much smaller scale of order a few tens of nanometers. We interpret the different sizes of the morphologies as a consequence of a larger viscosity for the TGDDM systems as compared to the TGAP ones rather than by a latter initiation of phase separation.  相似文献   
89.
This study investigates the effect of ionic liquids (ILs) on the anionic polymerization of methyl methacrylate (MMA). Polymethyl methacrylate (PMMA), an isotactic polymer, is prepared by anionic polymerization at a high reaction temperature with an IL that acts as both solvent and additive. The most plausible reaction mechanism is determined using 1H NMR and Fourier-transform infrared spectroscopy. The electrostatic interaction between MMA and the IL increases the apparent steric hindrance in MMA, resulting in the isotactic PMMA.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号